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Note on slightly unstable nonlinear wave systems 
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The asymptotic solution for large time of the initial-value problem for weakly 
nonlinear wave systems is obtained by the method of matched asymptotic 
expansions in the case in which the linearized problem is slightly unstable. 
The linearized solution is valid until its small exponential growth overcomes the 
algebraic decay due to the dispersion of the initial energy. For larger times the 
nonlineax terms become important, but there are no additional dispersive or 
diffusive effects. For the non-diffusive case an exact solution which enables the 
explicit verification of the asymptotic results is found. 

1. Introduction 

and Hocking, Stewartson & Stuart (1972), the amplitude equation 

governing the temporal evolution of a spatially periodic unstable wave, originally 
conjectured by Landau (1944) and later developed by Stuart (1960), was general- 
ized to include the more realistic dispersive and diffusive effects of spatial 
modulations of the wave envelope due to a relatively arbitrary initial disturbance, 
The simpler case of propagation of a wave envelope when there is no amplifica- 
tion or decay was derived for a general non-diffusive system by Benney & 
Newell (1967), and particular solutions were obtained. Stewartson & Stuart 
(1971) and Hocking et al. (1972) were concerned with plane Poiseuille flow when 
the Reynolds number R was greater than the critical value R,, such that a small 
disturbance would be amplified. In $ 2  the more general amplitude equation is 
derived for a large class of weakly nonlinear wave systems with small amplifica- 
tion when there is direct modal transfer, a result previously pointed out by Newell 
& Whitehead (1971). 

Stewartson & Stuart (1971) posed the relevant initial-value problem, but 
did not solve it. Hocking et al. (1972) investigated the evolution equation in a 
simplified case allowing only diffusion. Guided by numerical results, they found 
that the amplitude first could become singular a t  some time at  one position, a 
phenomenon they referred to as a ‘nonlinear instability burst’. Furthermore, 
they and Hocking & Stewartson (1972), in the general case, made an attempt at  
analytically obtaining the structure of the singularity. 
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In  recent papers by Newell & Whitehead (1971), Stewartson & Stuart (1971) 

A, = €A +lcAIAI2 (1.1) 
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The initial energy of the wave systems discussed here disperses, decreasing 
the amplitude of the wave envelope from that expected owing to the growth of the 
slightly unstable wave. Thus it is shown in $ 3  that the envelope equation is weakly 
nonlinear if i t  is to match to a problem in which the initial energy is not con- 
centrated in the most unstable wavenumber. This suggests that the weakly 
nonlinear envelope equation is the appropriate one rather than the fully non- 
linear equation studied by Hocking et al. (1972) and Hocking & Stewart- 
son (1972). The equation and matching conditions governing the spatial and 
temporal modulations of the wave envelope for large time are solved by asymp- 
totic techniques. Both dispersive and diffusive effects are included. This theory 
may yield either of two possible terminal states depending on the effects of the 
nonlinearity. The amplitude of the wave envelope reaches an equilibrium value 
or, as is the case of plane Poiseuille flow (for R > RJ, the energy is focused at 
a point at the centre of the wave crest moving with the group velocity in a manner 
similar to, but different from, that proposed by Hocking et al. (1972) and 
Hocking & Stewartson (1972). Of particular interest is the case in which the non- 
linearity accelerates the instability. In  that case, after the amplitude has grown 
sufficiently, the effects of nonlinearity dominate both the dispersive and diffusive 
effects. The energy first focuses at  one point in space. However, once the wave 
envelope becomes sharply peaked, the effects of dispersion and diffusion must 
once more become significant. It is shown in the appendix that these effects now 
modify the burst only in a small neighbourhood of it. Thus the energy eventually 
focuses, but only after a prescribed sequence of balances between nonlinearity, 
dispersion and diffusion. 

In  $4, the nonlinear wave envelope equation is solved exactly in the case in 
which there is no diffusion. The results obtained are shown to correspond to 
asymptotic results developed in $3 .  

The nonlinear evolution of aperiodic unstable waves is studied in order to 
understand further the instability of certain laminar flows. However, there are 
limits to the approach taken here. In particular, this analysis assumes that the 
spatial structure of the solution is approximately obtained from the linear prob- 
lem, which does not appear to be the case experimentally for plane Poiseuille 
flow. Nonetheless a mathematical treatment of this more tractable problem is 
in order and can be considered as a step towards the understanding of the more 
difficult problem. 

2. Formulation 
In  this section the type of amplitude equation appropriate for plane Poiseuille 

flow, equation (2.9), is shown to apply for a large class of nonlinear waves as was 
shown by Newel1 & Whitehead (1971). As one example, consider the following 
model initial-value problem : 

zct+L,(u) = €:kUIUI2, (2.1) 

where L, is a linear operator such that the linearization of (2.1) permits slightly 
amplified wavelike solutions with the dispersion relation ~ ( a )  = @,(a) + iwi(a).  
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The nonlinearity is weak, 0 < lekl < 1, and is in a form such as to allow direct 
modal transfer. A wavenumber am of maximum growth is assumed to exist, 
implying that wi(am) = 0 and, in the simplest case, w;(a,) < 0. For the growth 
rate to be small, i t  is necessary that 0 < wi(am) 3 e < I. 

A solution to this weakly nonlinear initial-value problem is obtained by the 
techniques employed by Stewartson & Stuart (1971): 

u = uo+Ekul+ ..., (2 .2)  

where uo satisfies the linearized initial-value problem. For large x and t ,  the 
asymptotic behaviour of this solution can be shown by the usual method of 
steepest descents to be a slowly varying wave train: 

uo N (&(a)/t*) exp [i~x - iw(a )  t ] ,  (2 .3)  

X l t  = o'(Z) (2.4) 

where E is the stationary point (assumed unique) of the phase 

and where &(a) = [ i / 2 w " ( E ) ] W ( Z ) ,  

where F(a)  is the Fourier transform of the initial condition. The growth rate 
is largest where Z is near a,. If a non-dimensional quantity proportional t o  Z - a, 
is small, then it can be shown that 

in which case 

The algebraic decay associated with the dispersion of the initial energy retards 
the exponential growth due to the instability mechanism. The effect of diffusion 
is represented by the last exponential term in (2.6). 

The analysis proceds by either evaluating u1 asymptotically, in which case 
expansion (2 .2)  is shown, in 3 5 ,  to become non-uniform when 

or by allowing the amplitude to be a spatially and temporally slowly varying 
function. The latter procedure is now followed in order to compare these results 
with those obtained by Stewartson & Stuart (1971). 

For large x and t ,  explicitly let the solution be the slowly varying wave train 

u = A(X,  7) exp [ia,x - iq.(a,) t ] ,  (2.7) 

where the slow variables are given by X = px and T = At, and where p and h 
will be determined. The equation for the amplitude A now follows from (2.1) : 

hA, +pwi(a,) Ax - +ip2 ~"(a , )  A, - ~ 4 (  am) A = &A I A I ', (2 .8)  

where the neglected higher order dispersive and diffusive terms 

9-2 
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are of O(p3). In  a co-ordinate system moving with the real group velocity, in 
which 5 = X - (p /h )  wi(a,) 7 ,  a non-trivial balance occurs if h = pz = wi(cc,). 
Consequently, the generalization of the amplitude equation (1 .1)  is derived: 

(2.9) 

(2.10) 

7 = et, 5 = s*(x - a,,t), (2.11) 

A,  -azA f l  = dA + kA ( A  12; 

A -+ (A/&) exp [ - t2/4u, 71, 

A must satisfy the initial condition (for 7 -+ 0,  t 9 1) 

where in (2.9) and (2.10) 

and where 

(2.12) 1 
B = oi(a,) = real growth rate of linearized theory, 

a, = wi(a,) = group velocity of linearized theory, 

a2 = a,,+ia,, = &iw"(arn), 

A = s~&(%& 

d = d, + idi. 
a2, represents the diffusive effects of the spatial variation of the wave train, 
while a2, represents the dispersive effects. Furthermore, the imaginary part of k 
corresponds to the familiar frequency modification effect common to  nonlinear 
oscillators. d is the normalized amplification factor. In the model problem of this 
section d = 1, while for plane Poiseuille flow as derived by Stewartson & Stuart 
(1971) and Hocking et al. (1972) d, = 1.  This insignificant difference results 
from a different choice of the phase of the fundamental harmonic (compare 
equation (2.7) here with equation (3.3) in Stewartson & Stuart (1971)). In  
addition, (2.5) implies that 

-- a& IcI 1. 
la21 7 

(2.13) 

3. Asymptotic solution 
Hocking et al. (1972) numerically solved (2.9) with initial condition (2.10) 

for the case in which the coefficients a,, d ,  k and A are real. In  particular, u2 
being real implies that the effect of the spatial modulations of the wave train is 
only to diffuse the amplitude. In  this section, the problem is asymptotically 
solved for all ranges of the complex parameters a2, d,  k and A. Thus both the 
diffusive and dispersive effects of the spatial variations are allowed. 

The amplitude is normalized according to 

A = B A  (3.1) 

in order to introduce a small parameter el, 0 < lcll 4 1. Then equation (2.9) 
governing the propagation of the wave envelope becomes 

B,-a,Btt = dB+s,BIBJ2 (3.2) 

B-t7-4exp[-[2/4u27] as 7 3 0  ( t $  I), (3.3) 

where el = lsllei# = klAI2 = d~l&(a,)1~. (3.4) 

and must be solved with the matching condition 
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d can be considered real since if it were not, then B = Be--idjr would satisfy the 
same problem with d = d,.. Thus in what follows dz = 0. 

Equation (3.2) is weakly nonlinear and hence the solution can be assumed in 
the form of a perturbation expansion 

B = B,+s,B,+ ... . (3.5) 

B, satisfies the linearized problem, whose solution is known (Stuart 1971): 

B, = (edr  7 / 7 4 )  exp [ - g2/4a2 T I ,  
The equation for B, is 

Equation (3.7) implies that the inner expansion (3.5) is uniform when r < O(l),  
as long as (2.13) is also satisfied. However, evaluating B, asymptotically for 
r > 1 using (3.7) gives 

Thus it follows that expansion (3.5) becomes disordered when r > 1 and 

(3.9) 

This is precisely when the exponential growth overcomes the algebraic decay 
of the steepest-descent solution. This suggests using the method of matched 
asymptotic expansions to obtain the solution when (3.9) is satisfied, as was done 
in a similar context by Newell, Lange & Aucoin (1970). 

Let the inner variable be r. The outer real variable T, implied by (3.9), is 

B N -  T4 exp(i&r) [ I+%+. . . ] .  
I+ 

This implies that the outer expansion should be of the form 

B = -  ' exp(i=)f(T)+ .... 
I"1P 4b2t  7 

(3.10) 

(3.11) 

(3.12) 

f ( T )  will give the leading-order behaviour of the solution for T = O(1). The equa- 
tion for f ( T )  is to be determined, solved and its solution matched to equation 
(3.11). The diffusive and dispersive term B, can be shown to have no effect on the 
equation for f ( T )  as long as (2.13) is satisfied. The equation for f ( T )  

2 d r T d f / d T  = d,.f+ei$flf2f* (3.13) 
has the general solution 

(3.14) 



134 R. Haberman 

where e(T) = - ~ t a n $ l n ( l - c T ) + ~ , ,  (3.15) 

and where c and 8, are arbitrary real constants. By matching this solution to 
(3.11), it is seen that 

eo = 0, c = cos~pr .  (3.16) 

(These results must be modified if q5 = in-, in which case 

f = b*T*exp [i(bT/2dr+8,*)], 

where, by matching, b = 1 and 0; = 0. This corresponds to the special case in 
which the only nonlinear effect is the well-understood frequency modification. 
However, in the problems of interest q5 + &r.) Consequently the leading-order 
behaviour of B, when T 2 O(1) (i.e. 7 3 l), is 

Equation (3.17) indicates that the amplitude reaches an equilibrium value 
as T -+ co if cos $idr < 0. In  this case as T -+ 00 

or, as is more meaningful, 
BB" +-dr/lE1l C O S ~ ~ .  (3.18 b) 

In order for T -+ CQ, only the case dr > 0 is relevant and hence cos q5 c 0. Thus 
IC, < 0. The nonlinear effects are stabilizing as in the corresponding problem with- 
out spatial modulations. 

In  the case in which the cubic nonlinearity is destabilizing (for example, plane 
Poiseuille flow for R > &), cosq5/d, > 0 (i.e. dr > 0,  Ic, > 0) .  Thus the solution 
(3.17) becomes infinite when 

T = d,./cos $, 

i.e. (3.19) 

Equation (3.19) determines the time and position of the first singularity. The 
energy is focused a t  5 = 0,  the centre of the wave of the largest linear growth 
rate moving with its group velocity. The amplitude goes to infinity first when 
T = 7, $ 1 such that 

(3.20) 

Note that this critical time is independent of a2, the parameter representing the 
diffusive and dispersive effects. As is also clear, the smaller the initial nonlinearity 
/el( = Ik( the longer it takes for the amplitude to become singular. Further- 
more, this analysis obtains analytic (but asymptotic) results for the cases 
numerically studied by Hocking et aZ. (1972). There, because of the computational 
nature of the problem, real coefficients were chosen: dr = k: = a2 = 1. Thus, 
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Time obtained Time obtained 
Initial from asymptotic from numerical 

amplitude formula results 

A 70 ( 7 0  s 1) 7 0  

0.01 5.45 4.23 
0.095 2.88 2.95 

TABLE 1. Time of amplitude singularity : comparison between asymptotic formula 
and numerical results of Hocking et al. (1972) 

from (3.4) and (3.20), it follows that lell = 
from 

cos$ = 1 and 7,, is determined 

( l A 1 2 / ~ ~ )  e27o = 1. 

The values of T~ corresponding to A = 0.01 and A = 0.095 agree reasonably 
well with those Hocking et al. (1972) obtained by numerically integrating the 
initial-value problem. The comparison is shown in table 1. 

Since the work in this section only analyses the leading-order term in the far 
field, the diffusive and dispersive effects have been neglected. The example in 
9 4 suggests that the dispersion in the far field by itself will not significantly alter 
the behaviour of the solution near the singularity. In  the appendix, a systematic 
perturbation expansion is introduced which considers both dispersion and diffu- 
sion. It is shown that, although the resulting expansion is not uniformly valid, 
the leading-order term correctly gives the structure, time and position of the 
singularity. Consequently, for example, the structure of the solution near the 
singularity is (for details see the appendix) 

The effect of the spatial modulation of the initial wave envelope is to allow 
the diffusion and dispersion to retard the growth due to the nodinear amplifica- 
tion. This only moderately weakens the amplification and eventually the non- 
linearity is dominant. Thus in this model a singularity is reached in a finife time, 
but this time is substantially longer than it is in the case without spatial modula- 
tions. The singularity can be prevented only by including higher order non- 
linear effects neglected in the formulation of this problem (equation (2.1) or 
(2.9)). None the less, it should be expected that near this critical time all the 
neglected nonlinear terms will become equally important. Likewise all the 
higher harmonics should become significant and thus this critical time is perhaps 
an indication of the breakdown of the laminar flow. 
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4. Non-diffusive case 
The case a% = 0 corresponds to an inflexion point in the growthrate; o&xrn) = 0. 

(For the growth rate to be a local maximum, or(ctm) = 0.) The problem is non- 
diffusive; the effect of the spatial modulations is only dispersive in nature. In  this 
case, the results of the previous sections can be applied in a straightforward 
manner. However, some insight is obtained by considering this case, since then 
the following exact solution to (3.2) exists: 

where c and 8, are arbitrary constants. This solution is similar to one obtained 
by Benney & Newel1 (1967) for the case of a neutrally stable non-diffusive 
system d, = cos$ = 0 (i.e. d, = Ic, = 0). The integral in (4.2) can be evaluated, 

If 

as 7 + 0 (t  9 l), then fortuitously B(5,7) given by (4.1) also satisfies the initial 
conditions (3.3) if eie,/cg = 1 (iSe. 6, = 0,  = 1). 

Therefore (4.1) is the desired solution in the case a2, = 0 if the inequality (4.4) 
is satisfied. 

To investigate the inequality (4.4), it is convenient to rewrite the integral as 

(4.5) 

The criterion for the initial conditions to be satisfied is now seen to be 

(2slcos#ln~1 < 1 (4.7) 
in the limit r -+ 0 (t 9 1). Since 7 = et, the inequality (4.7) holds as long as e is 
not transcendentally smaller than /ell. This logarithmic singularity as r -+ 0 
emphasizes the point that the initial conditions (3.3) must be treated in the con- 
text of the method of matched asymptotic expansions, that is, for T + 0 (t 9 1). 

In particular, the asymptotic expansion of B((,  7 )  for large 7 is obtained from 
(4.1) and (4.3) by noting that for large 7 

and (4.10) 
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which agree with the previously derived asymptotic result, equation (3.18) 
in the case = 0. Furthermore, if d,. > 0 and C O S ~  < 0, then the asymptotic 
expansion (4.9) can be simplified when 

(4.11) 

(4.12) 

and ede is still given asymptotically by (4.10). Equations (4.10)-(4.12) also cor- 
respond directly to equations (3.9) and (3.18) in the asymptotic analysis when 
aW = 0. Alternatively, if cos > 0, equation (4.1) indicates that B ( ~ , T )  
becomes inh i t e  when 

1 = 2 ~ s , l c o s 4 J ~ ~ d z o ,  (4.13) 

which, since 0 < < 1, occurs a t  some large value of T .  This large value of r, 
obtained asymptotically using (4.8), agrees with the value obtained by the 
asymptotic analysis of the previous sections, equation (3.19) in the limit u2, = 0. 

Here all the results of the asymptotic analysis in 3 3 have been verified from 
the exact solution for the case in which the problem is non-diffusive. 

5. Large-time behaviour without slow variations 
In $0 2-4 the asymptotic solution for large time was obtained by combining the 

method of slow variations with the method of matched asymptotic expansions. 
In  this section, it is suggested that a matching procedure by itself is simpler. 

It is recalled that uo can be calculated and evaluated asymptotically for large 
t (from equation (2.3) and under further approximations equation ( 2 . 6 ) ) .  Con- 
tinuing with the perturbation expansion (2.2), 

"lt+~z(",) = UOl%l2. (5.1) 

u1 itself is not needed, only its asymptotic behaviour for large x and t ,  such that 
(2 .5 )  is still satisfied. This is found to be 

Thus the expansion (2.2) is non-uniform when 

Equation (5.3) implies that the outer variable T is again given by (3.10) (here 
d, = 1). Proceeding directly to matching, the inner solution to two terms (u,, and 
ul) in terms of the outer variable to one term is, from (2 .5) ,  (3.4), (5.2) and (5.3), 
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Thus the leading-order behaviour of the outer solution is given by 

Using (3.1) and (3.4), it is seen that ( 5 . 5 )  corresponds exactly to (3.12). Thus 
(3.13) will again result, yielding again the solution given by (3.14)-( 3.16) since 
the matching condition implied by (5.4) is equivalent to that implied previously 
by (3.11). 

Hence the results of $ 3  hold without the necessity of the introduction of the 
concepts of slow variations. Spatial and temporal modulations of a uniform wave 
train are obtained using only the method of matched asymptotic expansions. 
This is not to say that (3.2) is incorrect, only that it is unnecessary in order to 
determine the long-time asymptotic behaviour in these types of problems. 

The author wishes to thank the referees for some helpful comments. This 
work was supported by the National Science Foundation, under Grant NSF-GA- 
10324. 

Appendix. Higher order terms 
For slightly unstable nonlinear wave systems when d,, > 0 and cosq5 > 0, 

the analysis in 5 3 showed that, for the leading-order term in the far field, a singu- 
larity is reached at  a finite value of T. This corresponds to a singularity first 
occurring at 7 = 7,, for one value of g = to = 0. For that leading-order term, the 
dispersive and diffusive effects were neglected near the singularity. Here, higher 
order terms which include these effects are calculated. It is shown that the result- 
ing expansion is not uniformly valid. The diffusive and dispersive terms become 
important near the singularity. However, the structure, time and position of 
the singularity are given uniformly by the leading-order term. 

The structure of this singularity is not consistent with that obtained by 
Hocking et al. (1972) in the case when the quantities are real or by Hocking & 
Stewartsqn (1972) in the general case. The present author believes that the 
expansion near the singularity they developed is in error, as it is not uniformly 
valid in a finite neighbourhood of = 0 as T -+ 7,,. In  particular, as 7 --f T~ such 
that <+ co, equation (2.9) of Hocking & Stewartson (1972) is disordered owing 
to the prevalence of the logarithmic terms. Hocking & Stewartson (1972) pro- 
posed another possible structure of the singularity. However, it does not apply in 
most cases. It is similar to the type of singularity derived here, although different 
in certain important ways. Specifically, the structure of the singularity obtained 
in this appendix is valid in all cases. 

The leading-order term, equation (3.17), is singular when T = d,/cosq5. 
Expanding in a Taylor series around the first item 7 = T~ and corresponding 
position 6 = t,, = 0, it is found that to leading order 
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where ro is large and is given by (3.20). Note that, ifa, = 0, the analysis of $ 4  
would apply. Thus these higher order effects are only diffusive in nature. 

In  order to obtain the higher order terms near the singularity in a systematic 
fashion, (3.2) should be resealed based on the leading-order term 

The resulting equation for B is 
B,- = B+(l+i tan$)BIBIz+hB~~,  

where h = a2a2T/21u2jzdT~o and < 1 

(note that the real part of h is greater than 0). Since near the singularity the cubic 
term will dominate the linear term, it is convenient instead to consider 

B? = ( I+i tan#)BJBJa+hBE. (A 2) 

In this form the Ieading-order equation for IAI < 1 has the solution 
- 
B, = (-  25+ '&-+exp [ - ti tan $In ( - 2;i+ 231, (A 3) 

B = ( - 2;i)-a exp [ - ti tan 4 In ( - 27 +l3] F(c) ,  (A 4) 

where 5 = E / (  - 279. (A 5 )  

corresponding to (3.17). A similarity solution of (A2) exists in the form 

Thus, after some algebraic manipulations, 

The outer expansion is a power series in lhl : 

F = 5 l~l"fn(5). 
n= 0 

The zeroth-order equation 

! 2 o g + f o + 1 + 5 2  tan 'f 0 = (1 + i tan $)folfo12 

is satisfied by fo = 1/(1+6)f (A 9) 

which corresponds to the previous leading-order term, equation (A3). The higher 
order terms are determined from equations of the form 

where, for each n, gn is a functional of the previously determined functions 
fo, . . . ,fn-l. The solution to this linear problem can be obtained in quadrature: 

fn = 8 (1 + cz) -Q [ I ~ ~ (  1 + 252 - i tan $1 - I&( 1 -I- i tan $) 

+ Y2(11n + 1:n) (1 -ti tan $)I, (A 10) 
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(the arbitrary constants of integration must be real). In  the non-dispersive case 
discussed by Hocking et al. (1972) (all quantities are real and thus 4 = 0) ,  this 
reduces to the result they obtained in a slightly different context: 

It should be noted that in the approach taken here the functional form of gn 
is different f?om theirs. 

The higher order terms must be computed asymptotically in order to show 
that the outer expansion (A 7) becomes disordered. Then the method of matched 
asymptotic expansions is used to obtain the inner expansion. For the zeroth- 
order term. 

It can be shown that the higher order terms are well ordered as c + CO. However, 
as 5 -+ 0, the outer expansion is disordered as is implied from the following results 
for c -+ 0, in which h complex ( A  =+ A*) yields the dispersive and diffusive case 
and h real ( A  = A*) the non-dispersive case: 

[(h*-h)/21h]] (i+tan2$)1nc+O(i) for hcomplex, 

+( 1 + i tan 4) + (1 + i tan 4) (3 - tan2 $) C21n g 

[(A*-h)/lh1]0(1/{2) for h complex, 

In [[( 1 + i tan$) (tan2 $ - 3) + i tan q5( 1 + tan2 q5)] + O( 1) 

+ $c2( - 3 - i tan 4 + 2i tan3 4) + .. . for h real, 

for h real, f 2 =  { 

fn+z= c2" 2% [m n >  1. 

(A 12) 

1 
[(A" -h)/lAl] O(i/C2(nf')) for hcomplex, 

( -  1)"+1(2n- l)! 1 
( I  + i tan 4) (tan2 4 - 3) 

2i tan #( 1 + tan2 4) 
n! 

] for Areal, [- + 

In the case in which h is real, the logarithmic singularity in the term fl vanishes 
if tan2 $ = 3. The higher order terms are still disordered. Hocking & Stewartson 
(1972) showed that the higher order terms (in both the case in which h is real and 
when h is complex) are not necessarily disordered. This was done by considering 
a similarity solution of (A2) which is slightly more general than (A4). In order 
to make their solution regular at the centre of the 'burst ' (6 -+ 0) ,  they insisted 
that the expansion be well-ordered there. However, in that manner they obtained 
a solution only if a certain relationship existed between tan 4 and A, which, for 
example, when h is real is equivalent to tan2 4 = 3 derived above to leading order 
in powers of \A\.  In  the present work, a similar limitation in parameter space is not 
necessary; solutions are obtained for all values of tan q5 and all complex values of h 
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as long as Ihl < 1. Here it is not required that the expansion be well-ordered. In- 
stead, the singularity as [ + 0, characteristic of the disordering of an outer expan- 
sion, will be analysed by a boundary layer in the 5 variable. 

The form of the breakdown of the outer solution depends on whether h is real 
or not. In either case it is seen that the inner variable is 

s = g / p p  = E / [  - 2lh] TI&. (A13) 

The inner solution is given by (A4), where the inner equation for F(s)  is 

i tan $ 
F = (1+itan$)FlF12 

1 + Ihl s2 
S & + F +  

- 2sF, ( A (  s2 (1 + i tan 4) - 1 F]. (A14) + 
(1 + (hJ  s2)2 

h 
[ l+ Ih, s2 

+-zs+h i t an$  
PI 

In  the case discussed by Hocking et al. (1972), where h is real and positive, 
$ = 0 and F is real, this reduces to 

SF, + F = E"3 + Fxx, 
which is an equation they obtained in a slightly different context. In their appen- 
dix, S. N. Brown gave a non-existence theorem for this equation with the bound- 
ary conditions F'(0) = 0 and F(co) = 0. Here P'(0) = 0, but F(s)  for large s must 
match to the outer solution for small 

The asymptotic expansion of the outer solution in terms of the inner variable 
for A complex ( A  + A*) is 

F = l+~(h*-h)lnlAl  ( l+ tan2#)  

(this will certainly imply F(m)  $. 0). 

while for h real ( A  = A") 

F = 1 +$h(l + i  tan$-$) + +h2lnh [(l + i  tan $) (tan2$ - 3) ( 1  -s2) 

)] + o(~3 Inn). (A 15 b )  (( 1 + i  tan$) (tan2$- 3) 2i tan$(1+ tan2$) 
n! 

+ (n+ l)! 

(In these expressions the symbol 6(sn) = cnsn for some constant c, independent 
of s which has not been determined, but can be.) The inner solution is thus of the 

(A 16a) 
form 

for h complex ( A  =t= A") and 

P(s) = 1 + 4(h* - A )  In IAl ( I  + tan2 Q1) + 1 A\ P2)(s) + O( I A(21n (A1 ) 

E"(s) = 1 +$A( - s2 + 1 + i  tan $) + $A2lnh[( 1 + i tan$) (tan2$ - 3) (1  - s2) 

-I- 2i tan 4( 1 + tan2 $)] + h2F(4)(s) + O(A3ln A )  (A 16 b )  
for h real ( A  = A*). 
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By substituting these expressions into (Al4),  the equations for the unknown 
functions result. For the case h + A*, 

dF@) h d2F(2) 
-s-+(1+itan$)(F(2)+B'(2)*)+-- = i t an$  

as Jhl as2 

whose solution, though presumably quite complicated, ccrtainly exhibits no 
singularities as s -+ 0 (and will be able to match as s --f 00). On the other hand if 
h is real (A  = A*) ,  then the problem of interest is simpler: 

= s4(2 - fi tan 4 )  +s2( - 4 + 4i tan $ - tan2 $) + $( 1 + i tan $) (3  + tan2$). 
(Alab)  

The general solution of (A 17b) (which is not exponentially large in order to match 
to the outer solution) is 

P4) = #s4+ (1 + i  tan$) ( - 3 + tan2 $) 

- $tan2 $(I + i tan $) +cl( l  + i  tan $) (82- 1) +ic,, (A181 

where c1 and c, are arbitrary real constants, chosen so that the solution can be 
matched. Thus, explicitly, F(4) is not singular as s -+ 0. 

Hence, even though the outer expansion is not uniformly valid, the first term 
of that expansion is uniformly valid. Thus, no matter how -+ 0 and 7 -+ 0, 

(A 19) B N ( - 27 + E2l-h exp - &i tan 9 In ( - 2;i + Z31. 
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